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16. Abstract 

In this report the completed p a r t  of the research project on the fracture analysis 
and corrosion fa t igue  i n  pipelines i s  presented. The report consists of  two parts. 
The f i r s t  par t  describes the theoretical work on the flaw evaluation as i t  relates t o  
weld defects in pipelines. The experimental work on the corrosion fatigue i n  pipe- 
l ine steels i s  discussed i n  the second par t .  The fracture mechanics methodology i s  
used throughout the investigation. 
viewed and classified from a viewpoint of their  importance in a fracture init iation 
and propagation process. Then a group of flaw-flaw and flaw-free surface interaction 
problems have been identified and investigated. 
identified are pores and solid inclusions with smooth boundaries, pores, notches, and 
solid inclusions w i t h  sharp corners, and cracks and planar inclusions. 
for the following interaction problems have been presented: 
a crack and a solid inclusion o r  a pore, between cracks and boundaries, between 
multiple cracks, between f l a t  inclusions and cracks, and planar cracks of f in i t e  size. 
In the second p a r t  of the report af ter  briefly discussing the mechanisms of corrosion 
fatigue, the electrochemical measurement techniques for determining the kinetics of  
passivation o r  surface reaction of clean surfaces are described. 
of the studies on the kinetics of corrosion fatigue crack propagation i n  X70 linepipe 

First ,  the possible weld defects have been re- 

Three groups of defects which are 

The results 
the interaction between 

The completed p a r t  
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FRACTURE ANALYSIS AND 
CORROSION FATIGUE IN PrPELrNES 

Scope -- of the Project 

The primary objectives o f  this research program are 

( a )  

( b )  

( c )  
( d )  
( e )  

Classification and  assessment of the relative importance 
o f  various types of weld defects 
An in-depth study of the problem of interaction between 
two flaws and between flaws and pipe surfaces 
Fracture analysis of pipes w i t h  crack arrestors 
The effect of crack orientation on the strength of  pipes 
The development of quantitative understanding of the early 
stage o f  chemical reactions i n  relation t o  the corrosion 
fatigue crack initiation and propagat ion 
Elucidating the mechanisms for corrosion fatigue crack i n i t i a -  ( f )  
tion and propagation, including the influences of chemica 
mechanical and metallurgical variables in pipe1 ine steels 
The formulation and evaluation of models f o r  predicting 
cracking response and service performance by using a comb 

( 9 )  

Y 

ne d 
fracture mechanics, surface chemistry and materials science 
approach. 

In this f i r s t  annual report the completed par t  o f  the research program 
i s  described and the results are presented. 

General Information 

The research presented in this  report i s  supported by the U.S. 
Department of Transportation, Office of  University Research, and by 
the U.S. Department of Interior, Minerals Management Service. Mr. Duglas 
B. Chisholm of DOT Research and Special Programs Administration, 
Office of Pipeline Safety Regulation i s  the Project Monitor. Dr. Charles 

V 



E. Smith, Research Program Manager, Technology Assessment and Research 
Branch, Minerals Management Service i s  the Department of Interior 
technical representative. 

Par t  I o f  the report describes the theoretical research carried 
ou t  by Professor F. Erdogan, the Principal Investigator, Mr. B.  Aksel 
and Dr. X-H L i u .  P a r t  IT presents the experimental work which was 
carried o u t  by Professor R.P .  Wei, the Co-Principal Tnvestigator and 
Mr. S. Chiou. 
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FRACTURE ANALYSIS A N D  CORROSION 

FATIGUE IN PIPELINES 

PART I 

THE FLAW INTERACTION STUDIES 

In this part of the report various kinds of flaws which may be 
found in pipelines, particularly i n  g i r t h  welds are classified and the 
problem of interaction between the s t ress  fields o f  typical flaws are 
considered. 
mechanics techniques t o  the problem o f  flaw evaluation. 

The emphasis i n  the study i s  on the application of fracture 

1. INTRODUCTION 

The standards of acceptability o f  welds i n  pipelines are generally 
based on certain empirical cr i ter ia  in which primary importance i s  placed 
on flaw length. 
i n  API STANDARD 1104 prepared by the "American Petroleum Insti tute - 
American Gas Association Joint Committee on Oil and Gas Pipeline Fie7d 
Welding Practices". However, the API Standard also recognizes fitness 
for purpose cr i ter ia  based on fracture mechanics methodology as a n  a l ter-  
native technique for flaw evaluation. 
mechanics approach i s  t h a t  since i t  takes i n to  account a l l  factors which 
may be relevant t o  the failure o f  the pipe such as the type and the rela- 
tive size, shape, orientation and location of the flaw, the effect o f  
multiple flaws, the nature o f  the applied stresses, and the environmental 
conditions, i t  could be somewhat more precise t h a n  the empirical rules 
which are largely based on the flaw length. 

assumed that the material contains some macroscopic flaws which may form 
the nucleus of fracture init iation. 
by u s i n g  an appropriate nondestructive flaw detection technique. 
from the weld defects the pipe may also have flaws which may be external 

Specifically for g i r t h  welds such standards are described 

The advantage of  the fracture 

In fracture mechanics approach t o  flaw evaluation i t  i s  implicitly 

Generally, these flaws may be mapped 
Aside 
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in o r i g i n .  
rupture of the net ligament adjacent t o  the cr i t ical  flaw in the pipe 
wall. 
pipe i s  repaired before further damage. 
resulting through crack, a f te r  some stable growth,  may become unstable 
leading t o  circumferential pipe break or dynamic propagat ion o f  an axial 
crack. The in i t i a l  rupture o f  the net ligament in the pipe wall i s  usually 
preceded by some subcritical crack growth due t o  fatigue, corrosion 
fatigue, o r  s tress corrosion cracking and the actual net ligament r u p-  
ture i s  generally a ductile fracture process. 

Generally the in i t i a l  phase of  the failure i n  a pipe i s  the 

In most cases the resulting through crack i s  arrested and the 
However, in some cases the 

Therefore, i t  is  seen that i n  order t o  apply fracture mechanics analy- 
s i s  t o  welded pipes, f i r s t  one needs t o  characterize the material i t se l f  
(the base metal, the weld material and  the material in the heat affected 
zone) w i t h  regard t o  fatigue and corrosion fatigue crack propagat ion,  
s tress corrosion cracking, fracture toughness and ductile fracture. Next, 
for a given flaw geometry and loading conditions one has t o  solve the 
related mechanics problem t o  calculate the appropriate fracture mechanics 
parameter such a 
displacement, or 
be the selection 
cation o f  the re 
analysis and the 

the stress intensity factor, the crack t ip  opening 
the J-integral. 
or development o f  a proper failure theory and the appli- 
ated quant i t a t ive  failure criterion. 
experimental work t o  be performed and the particular 

The t h i r d  step in the process would 

The type o f  

criterion t o  be used are clearly dependent on the expected o r  the most 
likely mode o f  failure. 

Even t h o u g h  the primary applied load in the pipelines i s  the internal 
pressure which i s  largely time-independent, there may be some small vari-  
ations in pressure and some vibrations particularly near the pumping 
stations which may add a fluctuating component t o  the s t a t i c  stresses 
just h i g h  enough t o  cause concern. There are also secondary stresses 
which are mainly time-varying in nature and therefore would enhance the 
subcritical crack propagation. Some of the sources o f  these secondary 
stresses are misalignment and fit-up, daily, seasonal and other thermal 
fluctuations, ground settlement and possible earthquakes, ax ia l  constraint, 



and gross bending in offshore piping due t o  buoyancy and other hydro- 
e las t ic  effects. I t  should be added that the "stress transients" may 
also play a major role i n  the subcritical crack propagation and particu- 
larly i n  the final phase of the fracture process, i f  one takes place. 
These stresses are generally caused by the pressure waves resulting from 
changes in flow rate due t o  partial ly o r  ful ly closing of the valves. 
In the case of pipes carrying liquids such as petroleum pipelines this  
is  known as the "water hammer" effect due t o  which the peak pressure 
may be as  h i g h  as multiples of the then operating pressure in the pipe. 
In the natural gas pipelines, this increase i n  the peak pressure may 
be somewhat more moderate. Nevertheless, in either case, such sudden 
surges of  pressure are probably responsible i n  most cases for the final 
stage of the net ligament failure in the pipe wall resulting in leaks o r  
i n  a catastrophic fai 1 ure. 

(including "flaws" which are considered t o  be undesirable) and  a cr i t ical  
review of the l i terature as we71 as very extensive references on the sub- 
jec t  up t o  1976 may be found in [ I ] .  The problem o f  interaction between 
two (planar) cracks and some empirical rules t o  define a single equiva- 
lent crack are discussed i n  121. The procedures dealing w i t h  the sub- 
cr i t ical  crack propagation by us ing  the tools of linear e las t ic  fracture 
mechanics (LEFM) i s  highly standardized and may be found, for example, 
in [3] o r  [4]. Similarly, the process of b r i t t l e  or quasi-brittle frac- 

A detailed description and classification of weld discontinuities 

ture is  relatively well-understood and i s  easily dealt with techniques 
based on LEFM and the concept of  fracture toughness. 
i s  not well-understood and not  standardized, however, i s  the ductile 
fracture. 
mechanics applications i s  based on the cr i t ical  crack t i p  opening dis- 
placement concept, whereas the J-integral seems t o  be more widely used 
i n  pressure vessel technology. The description, some applications of 
and extensive references on the crack opening displacement approach t o  
fracture may be found i n  [5]-[7]. 
instabili ty concept based on the crack opening displacement t o  shells and 
plates w i t h  a part-through crack i s  described in [8]. 

The process which 

The Appendix i n  the API Standard 1104 concerning the fracture 

Application o f  a general fracture 
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In this report  the emphasis i s  on the flaw evaluation based on 
fracture mechanics techniques. 
i s  concerned with the effect flaw-flaw and flaw-boundary interaction on 
the fracture mechanics parameters. 
which may be found in welds from a viewpoint of their  importance i n  
fracture mechanics applications, some o f  the more important flaw inter- 
action problems have been identified, their  method o f  solution i s  
briefly discussed and some typical and useful results are given. 

In particular this  part of the study 

After classifying possible flaws 

2. TYPES OF FLAWS 

In this  report our primary interest  in flaws i s  from a viewpoint 
of their  influence on enhancing or inhibiting fracture init iation and 
propagation i n  the pipe. Generally a flaw may be defined a s  a discon- 
tinuity in material constants or geometry. Variety of inclusions come 
under f i r s t  and notches, pores and cracks come under the second group  
of flaws. A common feature of a l l  flaws i s  that they disturb or perturb 
the stress field around them. Generally this perturbation gives rise 
t o  a stress concentration around the flaw. 
o f  flaws there may also be a reduction in key components of the stresses. 
W i t h  their  importance in the application of fracture mechanics analysis 
in mind, in this study we will ,  therefore, introduce a somewhat unconven- 
tional classification o f  flaws. 

However, for certain types 

2.1 Pores and Solid Inclusions 
Pores are the holes o r  voids in the material having entirely smooth 

surfaces ( F i g .  1 .a l ) .  
stress f ie ld outside the perturbation region of the pore, then the pore 
leads t o  a stress concentration which i s  of the form 

If a. refers t o  the magnitude o f  the uniform 

=Ku0 K = - ,  A 
6 'max 

where K i s  the "stress concentration factor", A i s  a ( f in i t e )  constant 
which depends on the geometry of the medium and p i s  radius of curvature 

-4 - 



Fig. 1 Types of  Flaws 
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of  the pore. We note t h a t  surface 
notches w i t h  f in i te  radius o f  curvature p would also come under this  
category. 

hav ing  entirely smooth surfaces. 
be greater o r  less than  the modulus E o f  the matrix or the base material , 
the two limiting cases being the r i g i d  inclusion (Ei=-)  and the hole 
( E i = O ) .  
sion i s  similar t o  t h a t  o f  a pore, mean ing  t h a t  there would be a stress 
concentration around the inclusion. 
would be a reduction i n  the net section stress.  However, i n  this case 
there would also be a stress concentration i n  other planes perpendicular 
t o  the applied stress.  For example, Fig. 2 shows the stress distribution 
i n  a medium containing a circular inclusion under plane strain o r  plane 
stress conditions. Note t h a t  f o r  c>R around the inclusion there i s  
indeed some stress concentration. In this figure, p i s  the shear modu- 
lus, K = 3-4v for plane strain,  and K = ( 3 - ~ ) / ( 1 + ~ )  for plane stress,  
v being the Poisson's ratio. 

Generally K i s  greater t h a n  one. 

Solid inclusions are the second phase materials in the medium also 
The modulus Ei of the inclusion may 

If E i < E ,  qualitatively the perturbed stress f ield o f  the inclu- 

On the other hand, i f  E i > E  there 

2 . 2  Pores, Notches and Solid Inclusions w i t h  Sharp Corners 
From E q .  ( 1 )  and Fig, 2 i t  may be seen t h a t  from a viewpoint of 

failure analysis a distinguishing feature o f  the pores, notches and 
solid inclusions w i t h  smooth surfaces is  t h a t  the stress state around 
such flaws i s  always bounded. E q .  ( 1 )  also indicates t h a t  as the root 
radius p of the notch tends t o  zero, the stress s ta te  around notch t i p  
would tend t o  infinity,  
fracture and fatigue crack init iat ion such flaws may have t o  be treated 
differently. 
inclusion o r  the notch t i p  is  a p o i n t  of stress singularity around which 
the stress s ta te  would have the following behavior: 

Particularly i n  problems concerning br i t t l e  

In these nonplanar flaw problems i t  i s  said t h a t  the 

0 < Re(X) < 1/2 , - k - -  ' ij r~ - 
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-0.2 I I I I I I I I I I 1 

0 I 2 3 4 5 

x / R  

Figure 2 .  T h e  s t r e s s  d i s t r i b u t i o n  in  a p late  with a c i r c u l a r  
e l a s t i c  inc lus ion  (p2 = 23p, , K~ = 1 . 6 ,  K~ = 1 .8 ) .  
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where k and x are constants representing the strength and the power of 
the stress singularity and r i s  a (small) distance from the notch t ip .  
Generally, E q .  ( 2 )  is valid for values o f  the material angle e > IT 

( F i g .  1 bl , b2,  b3). Even t h o u g h  the term ' 'stress intensity factor'' i s  
commonly used i n  relation w i t h  crack problems for which A = 0.5, i n  
the more general problem leading t o  an  expression such as  ( 2 )  k i s  also 
called the "stress intensity factor". 

In the case of notches w i t h  a material angle IT < e < 2n the power 
of singularity A i s  dependent on e only and may be obtained from (see, 
for example, [9] where the general problem o f  bimaterial wedge under 
variety of boundary conditions are discussed) 

cos[2(~-1)e] - 1 + (X-1)2(1-cos2e) = o . (3) 

Fig. 3 shows the so lu t ion  o f  (3) in the relevant range. 

2.3 Cracks and Flat  Inclusions 
These are simply the planar flaws in which the material angle e 

(theoretically) i s  ZIT  (Fig. 1 c l ,  c2). Again, the inclusion may be 
e las t ic  o r  rigid, the crack being a limiting case w i t h  zero modulus. 
In a l l  planar inclusion as well as crack problems eq. (2 )  i s  valid with 
A = 0.5. 

of interaction between two flaws o r  a flaw and a boundary. 
in i t i a l  phase of  the fracture problem i s  invariably a subcritical crack 
growth and since the stress intensity factor i s  the primary fracture 
mechanics parameter used in analyzing the subcritical crack growth pro- 
cess, the quantitative results i n  the interaction problems considered are 
mostly the stress intensity factors. 

The bulk of the material in this  report i s  devoted t o  the problem 
Since the 
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3. INTERACTION BETWEEN A CRACK AND A SOLID INCLUSION 
OR A PORE 

In this section we will consider the problem of the interaction 
between a solid elast ic  inclusion and a l ine crack. I t  will be assumed 
that the inclusion and the crack are sufficiently close t o  each other 
so that their  perturbed stress fields interact w i t h  each other. I t  will 
also be assumed that the crack-inclusion region i s  sufficiently f a r  away 
from the boundaries so t h a t  the i r  combined perturbed stress f ie ld does 
n o t  interact w i t h  the boundaries, Consequently, for the purpose o f  
calculating the perturbed stress s ta te  and the stress intensity factors 
i t  may be assumed that the domain i s  infinite.  

3.1 Plane Strain Problem for a Circular Inclusion o r  Pore 
Consider the general crack-inclusion problem described i n  Fig.  4. 

Assume t h a t  the composite medium i s  under plane strain o r  generalized 
plane stress conditions, w i t h  vi and K~ , ( i= l ,2 )  referring t o  the elast ic  
constants ( p i  the shear modulus, K~ = 3-4vi for plane s t rain,  and K~ = 

(3-vi)/(l+vi) for plane s t ress ,  vi being the Poisson's r a t i o ) .  Let ut  and 
be the displacement components i n  t and w directions shown in Fig .  

4 ( b ) .  By defining 
uW 

and by referring t o  [lo] for details,  the problem may be formulated in 
terms of a pair of singular integral equations of the following form: 

where the kernels k i j  are known functions and have a Cauchy type singu- 
lar i ty .  The known i n p u t  functions p1 and p2  are given by 

-1 0- 
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F i g u r e  4 .  
c r a c k  L i n  t h e  n e i g h b o r h o o d  o f  t h e  i n c l u s i o n  2 .  

Geomet ry  showing  t h e  d i s l o c a t i o n s  b, a n d  b y ,  and t h e  
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and awt being the stress components a t  the point ( t , c )  i n  the plane 
OWW 
with inclusion b u t  w i t h o u t  a crack. 
uniform tension a. away f r o m  the inclusion these stresses are given by 
Fig. 2.  

For example, for a plane under 

The solution of (5)  i s  of the following form 

g j ( t )  = Gj(t)/J(t-t2)(tl-t) , ( j= l ,2 )  ( 7 )  

where G1 and Gp are unknown bounded functions. After solving the inte- 
gral equations the Modes I and I1 stress intensity factors a t  the crack 
t ips tl and t2 may be defined by and obtained from the following expres- 
si ons : 

k 2 ( t l )  = lim 

k 1 ( t 2 )  = lim fi(t2-t) aw(t ,c)  = - "1 lim 4- g 2 ( t )  , 

owt(t,c) = - - "1 lim +QV g l ( t )  , 
t-tt 1 lCKl t+tl 

t+t2 l fK1 t t2 

k 2 ( t 2 )  = lim h(t,-t) awt(t,c) = - 
t+t2 

(8a-d) 

In the absence of a crack the stress components on a line perpendicu- 
l a r  to  the loading direction are shown i n  F ig .  2 for an e las t ic  inclusion. 
Similar results for a circular hole ( i .e . ,  for p2=0) are shown in Fig. 5. 

are shown in Figures 6-13. 
ized with respect t o  u o 6  where a. i s  the tensile stress acting on the 
plane away from and perpendicular t o  the crack and a i s  the half crack 
length. 

The stress intensity factors calculated a t  the crack t ips tl and t2 
The results shown i n  the figures are normal- 

Thus, the normalized stress intensity factors k i j  shown i n  the 

-1 2- 
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I C /R 

I r o  

Y 

X 

I \\L 1.5 

I 
I 

I I I I 1 I I 1 

0 I 2 3 4 5 
X / R  

Figure 5 .  The s t r e s s  d i s t r i b u t i o n  in  a p l a t e  with a c i r c u l a r  
hole .  
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I .o 

- 1  
I 

f 

Figure 6. The stress intensity factors for a symmetrically 
located radial crack (R/a = 2, c = O ) .  
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I .o 

0.5 

0 

-0.2 
2 

I I I 1 I I I 1 

4 6 

c / o  

8 IO 

Figure 7. T h e  stress intensity factors for a symmetrically 
located "tangential crack" perpendicular to the l o a d  ( b  = 0, 
R =  2 a ) .  

-15- 



3 
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0 

-0.5 

" 0  

0 - - - - -  k2, ----- ----- - 

0 2 4 6 8 
c / a  

Figure  8 .  S t ress  i n t e n s i t y  f a c t o r s  f o r  a c r a c k  p e r p e n d i c u l a r  
t o  t h e  e x t e r n a l  l o a d  ( R = 2 a ,  b = 3 a ) .  
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0 

-0.5 

Figure 9. Stres s  i n t e n s i t y  fac tors  f o r  a crack perpendicular 
t o  the external l o a d  ( R  = 2 a ,  c =  a ) .  
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-2.4 

Figurelo.  S tress  i n t e n s i t y  f a c t o r s  f o r  a crack in the matrix 
containing a c i r c u l a r  hole (p2 = 0 ,  c = R, b-a = 0.2R, a = c o n s t a n t ) .  

// - 
/ 
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o 1  1 1 1 I I I I I I 1 

0 I 2 3 4 5 

R /a  

Figure11. S tres s  i n t e n s i t y  fac tors  f o r  a crack in the matrix 
containing a n  e l a s t i c  inc lus ion  (p2 = 23p1, c = R, b-a = 0 . 2 R ,  
a = c o n s t a n t ) .  
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Figure 1 2 .  S tress  i n t e n s i t y  fac tors  for a crack in the matrix 
containing a c i r c u l a r  hole (v2 = 0 ,  c = 2 . 2 a ,  R = 2 a ) .  
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Figure 13. Stres s  i n t e n s i t y  fac tors  f o r  a crack in the matrix 
containing an e l a s t i c  inc lus ion  ( p 2 = 2 3 v 1 ,  c =  2 . 2 a ,  R =  2 a ) .  
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figures are defined by 

k . ( t  .) 
= JL!- , ( i , j  = 1 , 2 )  

Go 6 ki j ( 9 )  

where k i ( t . )  are given i n  (8) .  
cases, namely a circular hole ( i . e . ,  p2=0) and a s t i f f e r  e last ic  inclu- 
sion w i t h  e las t ic  constants 

Figures  show the results for only two 
3 

Fig. 6 shows the results for a s y m t r i c a l l y  located rad ia l  crack. 
Note that as the (inner) crack t i p  t2 approaches the boundary ( i .e . ,  for 
b+Rta)  the stress intensity factor k l ( t 2 )  tends t o  infinity for the case 
of hole and t o  zero f o r  the case of inclusion. Qualitatively the results 
given i n  this figure are very general, that i s  i f  the perturbed stress 
fields o f  a crack and a hole (o r  a pore) interact, then the stress inten- 
s i ty  factors a t  the crack tips would be greater than those which would 
be obtained for the cracked medium w i t h o u t  the hole. For example, note 
t h a t  in Fig. 6 the s t ress  intensity factors for p2=0 are greater than 
o0&, the value for the cracked plane w i t h o u t  a hole, and approach t h i s  
value as the crack moves away from the hole ( i . e . ,  as b-). 
trend would be observed for an inclusion the stiffness of which i s  less 
than t h a t  of the cracked medium (i .e. , for p q.~ ) .  
i f  the plane contains a s t i f f e r  inclusion ( i .e . ,  for p 2 > p l ) ,  then the 
stress intensity factors are smaller t h a n  ~ ~ 6 .  

on the location of the crack, one may observe some trends in these 
results which are opposite t o  that observed for the symmetric radial 
crack shown in Fig. 6 .  
by examining the stress fields perturbed by an inclusion o r  a hole which 
are shown in figures 2 and 5. By examining the signs of the Modes I and 
I1 stress intensity factors, from the results given in these figures one 
may easily conclude t h a t  generally for the crack t i p  near the matrix- 
inclusion boundary the crack would propagate towards the boundary i f  

Similar  

On the other hand, 2 1  

The results shown in Figures 7-13 are self-explanatory. Depending 

These trends, however, may easily be explained 
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v2=0 o r  v2<p1 , and away from the boundary if u p l .  
based on the ana lys i s  giving the plane of the maximum cleavage stress 
a t  the crack t i p .  
v e r i f i c a t i o n  may be found i n  [12], 

inclusion and the matrix mater ia l  may contain  a crack. 
located r ad i a l  cracks the general  problem i s  described by F ig .  14. The 
d e t a i l s  o f  the ana lys i s  of this problem may be found i n  [ l l ] .  
15-21 show some ca lcu la ted  results. In this  problem the formulation 
given i n  1111 and Fig, 14 allow the considerat ion o f  the spec ia l  cases 
o f  a crack terminat ing a t  the in t e r f ace  ( i , e . ,  b=R+a, ~ $ 0  i n  Fig .  6 
or  a2=b2, a l=a i n  Fig. 14) ,  and the crack going through the i n t e r f a c e  
( i . e . ,  b2=a=al i n  F i g ,  14) .  In these spec ia l  cases  i t  is shown t h a t  
[ l l ]  the poin t  (x=a, y=O) (Fig.  14) i s  a po in t  of stress s i n g u l a r i t y  and 
the stress s t a t e  i n  a c lo se  neighborhood o f  i t  has the following form: 

T h i s  conclusion i s  

The d e t a i l s  of the ana lys i s  and i t s  experimental 

In another  c l a s s  o f  crack- inclusion i n t e r a c t i o n  problems both the 
For symmetrically 

Figures 

k 
,B 1 J  

o i j ( r , e )  = - - . . ( e )  , ( i , j = x , y )  ( O < B < ~ )  

where r and e are the po la r  coordinates centered a t  the s ingula r  po in t ,  

Si j 
s t a n t .  The stress i n t e n s i t y  f a c t o r s  k = k(a)  g iven  i n  this sec t i on  a r e  
defined i n  terms o f  the r e l a t ed  cleavage stresses a s  follows ( F i g .  14) : 

is a bounded function and the stress i n t e n s i t y  f a c t o r  k i s  a con- 

( i )  crack i n  the matrix (-a<a2<b2<a = a l<b l ) :  

k(a)  = lim d? (a-x)Bo2yy(x,0) , 
X-ta 

( i i )  crack i n  the inc lus ion  (-a<a2<b2 = a<a 1 1  <b ) :  

k(a)  = lim a (x-a)'olyy(x90) 
X-ta 
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Figure 14. Inclusion-crack g e o m e t r y .  
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( i i i )  crack crossing the boundary (-aca2ib2 = a = a <b ) :  1 1  

In this case for simplicity we define the following normal and 
shear cleavage stress intensity factors 

kxx(a) = lim y Y alxx(a,y)  , (normal cleavage) , 
Y 4  

kw(a )  = l im yy 0 (a,y) , (shear cleavage) . 1 XY Y 4  

The f i r s t  special problem ( i )  w i t h  a2=b2 corresponds t o  the limit-  
ing case of the problem considered in Fig, 6. 
terminating a t  the bimaterial interface such a s  the cases ( i )  and ( i i )  
mentioned above, the power of the stress singularity ( a  o r  6 )  i s  
highly dependent on the stiffness ratio p2/pl and i s  relatively insensi- 
t ive t o  the Poisson's ra t ios  (or  
a2=b2, a l = a ,  b l > a ,  Fig. 14,  Table 1 shows the effect o f  p$p1 on 6 .  

I t  may be seen t h a t  for ( p z / p l ) < 7  the power 6 is  greater than  0.5, mean- 
ing t h a t  i f  the stiffness of  the inclusion i s  less t h a n  t h a t  o f  the 
matrix, then the stress singularity i s  stronger than the corresponding 
homogeneous case. Similarly, i f  u2>pl then 6<0.5. This i s  the reason 
for the asymptotic trends observed in Fig.  6 for the stress intensity 
factor k(a) as b 4 + a .  
s i ty  factors calculated from (12) .  

tive magnitude of the crack surface displacement, F ig .  15 shows some 
calculated results. 
y direction. 

Figures 16 and 17 show the stress intensity factors for a crack 
located i n  the inclusion. The limiting values of the stress intensity 
factors shown in these figures for  the crack length 2c2 approaching zero 
are obtained from uniformly loaded "infinite" plane solution w i t h  the 
applied stress s ta te  away from the crack region given by the uncracked 

In the problem of a crack 

and K ~ ) .  For the crack geometry 

Table 1 also gives the corresponding stress inten- 

For this problem, t o  give some idea about the nature and the rela- 

Here v(x,O) is  the crack surface displacement i n  
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T a b l e  1 .  T h e  e f f e c t  o f  modulus  r a t i o  on t h e  
s t r e s s  i n t e n s i t y  f a c t o r s  f o r  a c r a c k  
t e r m i n a t i n g  a t  t h e  i n t e r f a c e  ( a l =  a ,  
b , / a  = 2 ,  ~1 = “2  = 1 . 8 ,  C 1  = ( b l - a ) / 2 ) .  
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v(x, 0)  
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! 1 

1 1.5 x /  a 2 

Figure 15. Crack surface displacement for  a crack 
i n  t h e  matrix with one t i p  on  the in terface  
( K ~  = K~ = 1 . 8 ,  " 0  = ( l + ~ ~ ) a o ~ / ~ ~  1. b l / a  = 2 ,  
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7.275 

0.5 c 2 /a 7.0 0 

Figurel6. Stress intensity factor for a symmetrically 
located crack i n  the inclusion ( K ~  = K ?  = 1 . 8 ) .  

-28- 



2.0 - -  
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2.0 

t !  L tl 

F i g u r e  17. S t r e s s  i n t e n s i t y  f a c t o r s  f o r  a c r a c k  l o c a t e d  
i n  t h e  i n c l u s i o n  ( K ~  = K *  = 1 . 8 ,  
a 2  = - 0 . 9 a  o r  a 2  = - 0 . 7 5 a ,  b 2  v a r i a b l e ,  c 2  = ( b 2 - a 2 ) / 2 ) .  

one  t i p  f i x e d  a t  
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inclusion solution [13Jy namely 

( x , o )  = 0 . a a Ol xy (X,O) = 0 9 UZxy 

By u s i n g  (16) i t  
stress intensity 

k lirn - 
c 2 4  a o q  

may be shown t h a t  for the crack i n  the inclusion the 
factor has the following limit: 

Fig. 16 shows the results for a symmetrically located crack. 
for an eccentric crack a r e  shown i n  Fig. 17 (see Fig. 14 for  n o t a t i o n ) .  

Some typical results for the case i n  which b o t h  the inclusion and 
the matrix o r  base material contain a crack are shown i n  Fig.  18. 

The stress intensity factor for a completely cracked inclusion 
( i . e . ,  for  a2=-a, b2=a, a l=b , )  i s  given in Table 2.  The stress inten- 
s i ty  factor k(a)  given i n  this  table is  defined by (13) where 01 i s  the 
power of stress singularity. 

The stress intensity factors for a crack crossing the interface are 
given by figures 19 and 20. 
tional crack t i p s  f o r  which the stress s ta te  has square-root singularity 
( i .e . ,  a'=~'=0.5). 
the boundary (x=a) the normal and shear cleavage components of the stress 
intensity factor kxx and k 
trends of the stress intensity factors observed in these figures as a 
crack t ip  approaches the boundary x=a'are again due t o  the change i n  the 

The results 

In  these figures x=a2 and x=b, are conven- 

For the p o i n t  of the intersection of the crack w i t h  

are defined by (14) and (15).  The asymptotic 
XY 
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T a b l e  2 .  S t r e s s  i n t - e n s i t y  f a c t o r  f o r  

0 . 2  

0 . 6  

1 . o  
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c1 
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power of stress s i n g u l a r i t y .  
components around the s i n g u l a r  point (x=a, y=O) a r e  ( see  (14)  and (15))  

For example, i n  Fig. 19 for bl>a the stress 

On the o t h e r  hand, f o r  b,=a ( i . e . ,  the case  o f  a crack i n  the inclus ion 
terminat ing a t  the boundary) the stress s t a t e  around (x=a, y=O) i s  
given by ( see  eq. (13 ) )  

where r and e a r e  the po la r  coordinates  centered a t  the point  (x=a, y=O) 
( i . e . ,  r=y f o r  8 = 

follows t h a t  

o r  

and 

~ / 2 ) .  Thus ,  a s  bl+a from (20) and (21) i t  

kof (E) 
xx 2 +- a yQ 

Since k(a)  and fxx a r e  bounded and COY, f o r  y=O ( a t  w h i c h ,  by (14) ,  
kxx must be ca lcu la ted)  kxx(a) would become unbounded. 
Seen t h a t  f o r  bl-fa, k Also, since cx 
( f o r  the terminat ing crack t i p )  i s  g r e a t e r  than 0.5 ( a t  bl f o r  the 
embedded crack t i p ) ,  by following a s i m i l a r  argument i t  may be shown 
t h a t  a s  b,+a , k(bl ) becomes unbounded. 

S imi la r ly ,  i t  is 
tends t o  (negat ive)  i n f i n i t y .  

XY 
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Figure 18. Stress i n t e n s i t y  fac tors  for  a crack in the 
matrix (epoxy) a n d  a crack i n  the inc lus ion  (aluminum) 
(IC, = 1 . 6 ,  ~ ~ ~ 1 . 8 ,  u 2 / p 1 = 2 3 . O 7 7 ;  a 2 = 0 . 3 a ,  b 2 = 0 . 8 a ,  
2 c 7  = ( b l - a l )  = a  f i x e d ,  d = (bl+a1)/2 v a r i a b l e ) .  
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Figure 19. Stress  i n t e n s i t y  fac tors  f o r  a crack going 
through the matrix- inclusion in ter face  
c 2  = 1 . 8 ,  
c = ( b l - a 2 ) / 2 ,  a 2  = O  f i x e d ,  b l  v a r i a b l e ) .  

(K, = 1 . 6 ,  

p 2 / p 1  = 23.077, a' = 8' = - 0 . 5 , Z a  = B = 0,27326, 
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Figure 20. Stress  i n t e n s i t y  f a c t o r s  f o r  a crack 
going through the in ter face  ( K ~  = 1 . 6 ,  i c 2 =  1 . 8 ,  
p 2 / p l  = 23.077,  Ka = 

f i x e d ,  d = ( b l + a 2 ) / 2  v a r i a b l e ) .  
= 0.27326,  2c = ( b l - a 2 )  = a 
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Figure 21.  Crack surface displacement for  cracks goi,ng 
through the in ter face  ( K ,  = 1 . 6 ,  K~ = 1 . 8 ,  v 2 / p 1  = 23.077, 
vo = ( 1 + ~ , ) a c f ~ / v ~  b 2  = a f i xed ,  a 2  variable:  ( a )  a 2  = 0, 
( b )  a 2 = a / 2 ,  ( c )  a 2 = 0 . 9 a  ). 



The asymptotic trends i n  Fig.  20 can be explained by observing t h a t  
y=a=0.27326 f o r  the crack c ross ing  the boundary (a2<b2=a=a <b ) y  01=0.5 
for the crack t i p  embedded i n  the matr ix ,  ~=0.33811 f o r  the crack i n  the 
matrix terminating a t  the boundary (a l=a ,  d/a=1.5) and 01=0.82580 f o r  
the crack i n  the inclusion terminating a t  the boundary (b2=a,  d/a = 0.5) .  

ments of a crack c ross ing  the boundary. 

propagation the d e t a i l s  of the angular  var ia t ion  of the stresses, 
t h a t  is  the funct ions  f . . ( e )  i n  (21)  may be needed. 
giving the d i s t r i b u t i o n  of these funct ions  a r e  shown i n  Figures 22-24. 
From the d e f i n i t i o n s  (12 ) ,  (13) and (21) we note t h a t  f e e ( 0 )  = 1 .  The 
funct ions  G i j  shown i n  Figures 22-24 a r e  obtained from 

1 1  

Figure 21 shows some sample results f o r  the crack sur face  displace-  

For a crack terminating a t  the boundary t o  study the further crack 

Sample results 1J 

Thus ,  G e e ( 0 )  = k(a)  and f i j ( e )  is  g i v e n  by 

The ana ly t i c a l  d e t a i l s  o f  a crack terminat ing a t  and cross ing the 
boundary i n  a two-phase nonhomogeneous e las t i c  medium may be found  i n  
[14] and [15]. 

3.2 Anti-Plane Shear Problem f o r  a Crack In t e r ac t i ng  w i t h  
a Circular  Inclusion 

The simpler problem f o r  a medium containing a crack and a c i r c u l a r  
e l a s t i c  inclus ion or a hole shown i n  Fig. 4 and subjected t o  a uniform 
ant i- plane shear  loading 

can a l s o  be t r e a t e d  i n  a manner s i m i l a r  t o  the plane s t r a i n  problem 
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Fig. 22, Angular variation of ue8 around a 
interface. 

crack t i p  touching t h e  
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Fig. 23 .  Angular variation of ur8 around a crack t i p  touching t h e  
interface. 

Fig. 24. Angular variation of urr around a crack t i p  touching the 
interface. 
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discussed in the previous section. In this case the crack surface 
tractions for the perturbation problem are obtained by solving the 
problem of  inclusion o r  hole w i t h o u t  a crack. Some sample results 
giving the stress distribution 0 
are shown i n  Figures 25 and 26. 
results are very similar t o  the plane strain results shown i n  figures 
2 and 5. 
s t ress  intensity factors k3 a t  the crack t ips x = 

(x,y) ( for  various fixed values o f  y )  
Y Z  

Again note t h a t  qualitatively these 

For this problem some sample results giving the Mode I11 
a are defined by 

k ( a ) p o 6 =  k3(a) = lim ~ ~ a l y z ( x , c )  , 
X i d  

k ( - a ) p o 6  = k3(-a) = lim d m  olyz(x,c) . (29)  
x+-a 

Figure 27 shows the results fo r  the radial crack in a medium con- 
Similar results for an arbitrarily 

Figure 30 gives some com- 
taining an inclusion o r  a hole. 
located crack are shown i n  Figures 28 and 29. 
parative results showing  the influence o f  the crack length-to-radius 
ratio on the stress intensity factors where m i s  the modulus r a t i o  
m = u2/p1 and k ( i a )  = k3(7a)/pon. 
plane w i t h  a crack o f  length 2a for which k3(ia) = p o 6 .  

For m = 1 we have a homogeneous 
Consequently 

giving the s t r a i g h t  l ine shown i n  the figure. For m=O, m=l and m=23.3 
the slopes o f  k( ia)  vs. 
respectively. The results for m=O and rn>O are obtained from the solution 
of an "infinite" plane w i t h  a central crack subjected t o  the crack sur- 
face tractions 0 (x,O) which are equal and opposite t o  the corresponding 
stresses given i n  figures 25 and 26 a t  x=b=1.5R. 

the boundary is discussed i n  [16] and [17]. 

curves as ( a / R ) 4  are 1.47, 1 and 0.57, 

YZ 

The singular behavior of the stresses terminating a t  and crossing 
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Fig .  25. The shear s t ress  T~~ i n  a matrix w i t h  a 
ci rcul a r  hole. 

Y 

2.0 t 

I .o 

0 
0 I 2 3 4 5 

x /  R 

Fig. 26. The shear stress T~~ i n  a matrix with a 
circular inclusion ( p 2  = 23.3 p,). 
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Fig. 27. Stress intensity factors for the antiplane 
shear problem (k = k3/p,6, R = a ) .  
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F i g .  28. Stress intensity factors for the 
anti plane shear prohl em ( k=k3/po&, R=a, b= 
1.5R). 
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Fig.  29. Stress i n t ens i t y  factors f o r  the 
antiplane shear prablem ( k = k 3 / p o 6 ,  R=a, 
c=l.5R). 
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f i R  

Fig .  30. Stress i n t e n s i t y  f ac to r s  f o r  the  
an t ip lane  shear problem ( k = k 3 / p o , R y  c=O, 
b=l .5R).  
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4. INTERACTION BETNEEN CWCKS 

In this  section the problem of interaction between cracks on the 
surface and inside a plate with f in i t e  thickness i s  considered. 

4.1 Interaction Between Paral 1 el Internal Cracks 

The basic geometry o f  the problem i s  shown in Fig .  31. In this  
section we will consider various special cases relating two or three 
cracks on the surface of a plate under uniform tension. 

factors are given in Table 3. Referring t o  Fig. 31, for this problem 
we have a=b ( i .e .y  no crack on x axis) c = H-d, P = 0 (no concentrated 
force) 28 i s  the distance between the cracks, 2L i s  the crack length and 
0 = 0 for  y +- fm. In  this section too the Modes I and  I1 stress 
intensity factors kl and k 2  are defined by 

For two synunetrically located parallel cracks the stress intensity 

- 
YY 0 

k l  = lim fi oyy(rY0) , k 2  = lim ~ ~ r ~ ( p , O )  
r 4  r 4  

where r y $  are the polar coordinates a t  the crack t ip ,  the crack being 
along 4 = IT. 

k l  also decreases and k 2  becomes more significant. The angle e shown 
in this table i s  an (approximate) direction of  a probable crack growth 
which i s  obtained from a simple assumption t h a t  along this radial line 
a t  the crack t i p  the cleavage stress u g e ( r , e )  i s  maximum [12], where 
r<cH-d. 
other. 

Note that as the distance 28 between the cracks decreases 

Here e>O indicates that the cracks would grow away from each 

4.2 Interaction Between Paral le1 Surface Cracks 

The stress intensity factors and the angle o f  probable crack growth 
direction i n  a plate containing two paral7e7 and equal surface cracks 
under  uniform tension o r  pure bending are shown in Figures 32-35. In  this 
problem we have a=b,  c=O and dcH. The figures also show the Mode I 
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Figure 3. The basic crack geometry. 
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Table 3 .  Stress intensity factors i n  a strip conta in ing 
two symmetric internal cracks, t=(d-c)/2. 

0.5 
1 .o 
1.5 

0.05 2.0 
5.0 

10.0 
20.0 

0.7797 -0.1175 16.430 
0.8512 -0.061 6 8.194 
0.9052 -0.0308 3.887 
0.9395 -0.01 63 1.992 
0.9953 -0.0001 0.157 
1.0053 -0.00001 0.014 
1.0060 0.0000 0.000 

0.5 0.7992 -0.1199 16.363 
1 .o 0.8749 -0.0624 8.076 
1.5 0.9310 -0.0307 3.774 

0.1 2.0 0.9660 -0.0162 7.920 
5.0 7.0219 -0.0001 0.106 

10.0 1.0247 -0.00001 0.003 
20.0 1.0248 ’ 0.0000 0.000 

0.5 0.8846 -0.2570 15.578 
1 .o 0.9749 -0.0656 7.634 
1.5 1.0437 -0.0330 3.648 
2.0 1.0839 -0.0155 1.641 
5.0 1.1096 -0.0001 0.019 

10.0 7.1097 0.0000 0.000 

0.2 
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Figure 32. S t r e s s  i n t e n s i t y  f a c t o r s  and probable crack propagation 
ang le  i n  an i n f i n i t e  strip conta in ing two edge cracks  under 
uniform tension, d=O.ZH. 
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Figure 33. Same as Figure 2 ,  d=0.5H. 
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Figure  34. St ress i n t e n s i t y  f a c t o r s  and probable crack propagat ion 
angle i n  an i n f i n i t e  s t r i p  w i t h  two edge cracks under 
bending, d=O.ZH. 
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Figure 35. Same as Figure 4, d=0.5H. 
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stress intensity factor kl  for a single surface crack for comparison 
(the dashed l ine) .  For the single crack k p  i s  0. 
k, i s  smaller t h a n  the corresponding single crack value, k p  becomes more 
significant as B decreases, and cracks would tend t o  propagate away 
from each other. For the bending problem shown in Figures 34 and 35 
the normalizing stress om i s  given by 

Again note t h a t  

where M i s  the moment for u n i t  thickness. 

surface cracks under uniform tension or bending. 
k 2 4 ,  meaning t h a t  the outside cracks would grow away from the middle 
crack. 
introduction of the middle crack "relaxes" the stress intensity factors 
in the outer cracks. Fig. 40 shows t h a t  f o r  short cracks the interaction 
and for longer cracks the back surface effect would dominate. 
41 shows the results for three point bending. 
i s  the surface stress i n  the plate under bending, namely 

Figures 36-41 show the results for a plate con ta in ing  three parallel 
In this  case, t o o ,  

Comparison of the two and three crack results shows t h a t  the 

Figure 
I n  this problem, too, om 

The stress intensity factor k ( d )  for  the outer cracks approaches zero 
as B -+ 4H (for which the moment i s  zero). 

4.3 Cracks Parallel t o  the Boundary 
The basic geometry for the plate containing a crack parallel t o  

The problem considered 
Thus ,  

the boundary is shown by the insert i n  Fig .  42. 
in this  section also takes into account the material orthotropy. 
the material constants shown i n  Fig. 42 a re  related t o  the e las t ic  
constants of an orthotropic plate as follows: 
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Figure 26. Stress intensity factors in an infinite s t r i p  con ta in ing  
three edge cracks under uniform tension, d=b=O.ilH. 
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Figure 37. Same as Figure 6 ,  d=b=0.5H. 
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Figure  38, Stress i n t e n s i t y  fac to rs  i n  an i n f i n i t e  s t r i p  con ta in ing  
three edge cracks under bending, d=b=0.2H, a,=6M/H2. 
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Figure 39. Same as Figure 8 ,  d=b=0.5H, u,=6M/H2. 
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Figure 40. The effect o f  the crack depth on 'the stress intensity 
factors i n  an inf ini te  s t r ip  under tension, B=O.ZH. 
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Figure 41. S t r e s s  i n t e n s i t y  f a c t o r s  i n  an in f in i t e  s t r i p  conta in ing 

6M/H2 = 24P/H. 
edge cracks and subjected  t o  three po in t  bending, om - - 
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6 4  = E11/E22 , K = 2G1 2 -sa (34) 

The engineering material constants which appear i n  (34) are defined 
by the following stress-strain relations 

- 1 --  
2E12 G,2 ‘12 ’ * * e  

In F ig .  42 and the subsequent figures 
respectively para1 le1 and are perpend 

the coordinate axes 1 and 2 
cular to the crack. The ma 

a re 
n 

result  of F ig .  42 i s  that as the crack approaches the boundary the stress 
intensity factors become unbounded. Also, the analysis of the mixed 
mode stress s ta te  a t  the crack t i p  would indicate that the direction 
along which the cleavage s t ress  is  maximum i s  inclined toward the 
nearest boundary, meaning that any further propagation of the crack would 
be toward the nearest boundary. 
loaded under pure shear are shown i n  Fig. 43. 
results i s  that the Mode I1 s t ress  intensity factor i s  relatively insen- 
s i t ive  t o  the location of the crack, i n  fact  i t  somewhat decreases as 
the crack approaches the boundary before becoming unbounded. 

a symmetrical ly located crack under Modes I and I1 loading conditions. 

are shown i n  F ig .  46. The figure also shows the stress intensity fac- 
tors for  an inf ini te  plate (H=-) which are given by 

The corresponding results for a crack 
The peculiarity of these 

Figures 44 and 45 show the effect of the relative crack length for 

The results for  two collinear cracks loaded under Mode I conditions 
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Figure 42. The effect  of the crack location on the s t ress  inten- 

sity factors for uniform surface pressure. H = 0.75a, 

6 1 = K for the isotropic materials and 6 = 1.1175, 

K = 1.2895 for the orthotropic material (yellow birch) .  
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Figure 43. Same as figure 2 for uniform shear applied to the 

crack surface. 
. -  
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Figure44. Effect o f  the crack length on the stress intensity 

factor for a symmetrically located crack under uniform 

pressure, K = 1. 
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Figure 45. Same as f i g u r e  4 f o r  uniform shear applied t o  crack 

surface 
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